Three-Dimensional, Kinematic, Human Behavioral Pattern-Based Features for Multimodal Emotion Recognition
نویسنده
چکیده
This paper presents a multimodal emotion recognition method that uses a feature-level combination of three-dimensional (3D) geometric features (coordinates, distance and angle of joints), kinematic features such as velocity and displacement of joints, and features extracted from daily behavioral patterns such as frequency of head nod, hand wave, and body gestures that represent specific emotions. Head, face, hand, body, and speech data were captured from 15 participants using an infrared sensor (Microsoft Kinect). The 3D geometric and kinematic features were developed using raw feature data from the visual channel. Human emotional behavior-based features were developed using inter-annotator agreement and commonly observed expressions, movements and postures associated to specific emotions. The features from each modality and the behavioral pattern-based features (head shake, arm retraction, body forward movement depicting anger) were combined to train the multimodal classifier for the emotion recognition system. The classifier was trained using 10-fold cross validation and support vector machine (SVM) to predict six basic emotions. The results showed improvement in emotion recognition accuracy (The precision increased by 3.28% and the recall rate by 3.17%) when the 3D geometric, kinematic, and human behavioral pattern-based features were combined for multimodal emotion recognition using supervised classification.
منابع مشابه
Classification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملMultimodal Emotion Recognition Integrating Affective Speech with Facial Expression
In recent years, emotion recognition has attracted extensive interest in signal processing, artificial intelligence and pattern recognition due to its potential applications to human-computer-interaction (HCI). Most previously published works in the field of emotion recognition devote to performing emotion recognition by using either affective speech or facial expression. However, Affective spe...
متن کاملPrediction of asynchronous dimensional emotion ratings from audiovisual and physiological data
Automatic emotion recognition systems based on supervised machine learning require reliable annotation of a↵ective behaviours to build useful models. Whereas the dimensional approach is getting more and more popular for rating a↵ective behaviours in continuous time domains, e. g., arousal and valence, methodologies to take into account reaction lags of the human raters are still rare. We theref...
متن کاملMEC 2016: The Multimodal Emotion Recognition Challenge of CCPR 2016
Emotion recognition is a significant research filed of pattern recog‐ nition and artificial intelligence. The Multimodal Emotion Recognition Challenge (MEC) is a part of the 2016 Chinese Conference on Pattern Recognition (CCPR). The goal of this competition is to compare multimedia processing and machine learning methods for multimodal emotion recognition. The challenge also aims to provide a c...
متن کاملMultimodal Affect Recognition using Kinect
Affect (emotion) recognition has gained significant attention from researchers in the past decade. Emotionaware computer systems and devices have many applications ranging from interactive robots, intelligent online tutor to emotion based navigation assistant. In this research data from multiple modalities such as face, head, hand, body and speech was utilized for affect recognition. The resear...
متن کامل